Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.459
Filtrar
1.
Psychopharmacology (Berl) ; 241(5): 1001-1010, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270614

RESUMO

RATIONALE: Recently, we demonstrated that the activation of the nociceptin/orphanin FQ (N/OFQ) receptor (NOP) signaling facilitates depressive-like behaviors. Additionally, literature findings support the ability of the N/OFQ-NOP system to modulate the hypothalamic-pituitary-adrenal (HPA) axis. OBJECTIVES: Considering that dysfunctional HPA axis is strictly related to stress-induced psychopathologies, we aimed to study the role of the HPA axis in the pro-depressant effects of NOP agonists. METHODS: Mice were treated prior to stress with the NOP agonist Ro 65-6570, and immobility time in the forced swimming task and corticosterone levels were measured. Additionally, the role of endogenous glucocorticoids and CRF was investigated using the glucocorticoid receptor antagonist mifepristone and the CRF1 antagonist antalarmin in the mediation of the effects of Ro 65-6570. RESULTS: The NOP agonist in a dose-dependent manner further increased the immobility of mice in the second swimming session compared to vehicle. By contrast, under the same conditions, the administration of the NOP antagonist SB-612111 before stress reduced immobility, while the antidepressant nortriptyline was inactive. Concerning in-serum corticosterone in mice treated with vehicle, nortriptyline, or SB-612111, a significant decrease was observed after re-exposition to stress, but no differences were detected in Ro 65-6570-treated mice. Administration of mifepristone or antalarmin blocked the Ro 65-6570-induced increase in the immobility time in the second swimming session. CONCLUSIONS: Present findings suggest that NOP agonists increase vulnerability to depression by hyperactivating the HPA axis and then increasing stress circulating hormones and CRF1 receptor signaling.


Assuntos
Cicloeptanos , Imidazóis , Peptídeos Opioides , Piperidinas , Receptores Opioides , Compostos de Espiro , Camundongos , Animais , Receptores Opioides/fisiologia , Peptídeos Opioides/metabolismo , Glucocorticoides/farmacologia , Nortriptilina/farmacologia , Receptor de Nociceptina , Corticosterona/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Mifepristona/farmacologia , Sistema Hipófise-Suprarrenal/metabolismo
3.
Vet Res Commun ; 47(3): 1103-1114, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37209184

RESUMO

Undoubtedly, the food intake process is one of the most necessary physiological functions for the survival of animals and humans. Although; this operation seems simple on the surface, the regulation of the mechanisms involved in it requires the cooperation of many neurotransmitters, peptides, and hormonal factors in the nervous and endocrine systems. Understanding the signals that regulate energy levels and appetite, may open new approaches to therapeutics and drugs used in obesity-related complications. Improving the quality of animal products and health is also possible due to this research. The present review is aimed to sum up the current findings on central effects of opioids on the food consumption of birds and mammals. Based on the reviewed articles, the opioidergic system appears to be one of the key elements in the birds' and mammals' food intake and is closely related to other systems involved in appetite regulation. According to the findings, it seems that the effects of this system on nutritional mechanisms are often applied via kappa- and mu-opioid receptors. Controversial observations have been made regarding opioid receptors, highlighting the need for further studies, especially at the molecular level. The role of opiates in taste or diet craving also showed the efficacy of this system, especially the mu-opioid receptor, on preferences such as diets containing high sugar and fat. Finally, putting the results of this study together with the findings of human experiments and other primates can lead to a correct comprehension of the appetite regulation processes, especially the role of the opioidergic system.


Assuntos
Obesidade , Receptores Opioides , Humanos , Animais , Obesidade/veterinária , Receptores Opioides/fisiologia , Mamíferos , Ingestão de Alimentos/fisiologia , Aves
4.
Peptides ; 164: 171004, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990387

RESUMO

This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).


Assuntos
Peptídeos Opioides , Receptores Opioides , Animais , Humanos , Peptídeos Opioides/farmacologia , Receptores Opioides/fisiologia , Analgésicos Opioides/farmacologia , Aprendizagem/fisiologia , Dor/tratamento farmacológico
5.
Neuropeptides ; 99: 102325, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36812665

RESUMO

The opioid growth factor (OGF) is an endogenous peptide that binds to the nuclear-associated receptor (OGFr), and plays a significant role in the proliferation of developing, renewing, and healing tissues. The receptor is widely expressed in a variety of organs, however its distribution in the brain remains unknown. In this study, we investigated the distribution of OGFr in different brain regions of male heterozygous (-/+ Lepr db/J), non -diabetic mice and determined the localization of the receptor in three major brain cell types, astrocytes, microglia, and neurons. Immunofluorescence imaging revealed that the highest number of OGFr was in hippocampal CA3 subregion followed by primary motor cortex, hippocampal CA2, thalamus, caudate and hypothalamus in a descending order. Double immunostaining revealed receptor colocalization with neurons and little or no colocalization in microglia and astrocytes. The highest percentage of OGFr positive neurons was identified in the CA3. Hippocampal CA3 neurons play an important role in memory processing, learning and behavior, and motor cortex neurons are important for muscle movement. However, the significance of the OGFr receptor in these brain regions and its relevance in diseased conditions are not known. Our findings provide a basis for understanding the cellular target and interaction of the OGF- OGFr pathway in neurodegenerative diseases such as Alzheimer's, Parkinson's, and stroke where hippocampus and cortex have an important role. This foundational data may also be useful in drug discovery to modulate OGFr by opioid receptor antagonist in various CNS diseases.


Assuntos
Diabetes Mellitus Experimental , Receptores Opioides , Animais , Masculino , Camundongos , Encéfalo/metabolismo , Neurônios/metabolismo , Receptores Opioides/fisiologia
6.
Eur J Pharmacol ; 933: 175214, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007608

RESUMO

Opioids are one of the most effective anti-nociceptive agents used in patients with cancer pain or after serious surgery in most countries. The endogenous opioid system participates in pain perception, but recently its role in inflammation was determined. κ-opioid receptors (KOP receptors), a member of the opioid receptor family, are expressed in the central and peripheral nervous system as well as on the surface of different types of immune cells, e.g. T cells, B cells and monocytes. In this review, we focused on the involvement of KOP receptors in the inflammatory process and described their function in a number of conditions in which the immune system plays a key role (e.g. inflammatory bowel disease, arthritis, subarachnoid hemorrhage, vascular dysfunction) and inflammatory pain. We summed up the application of known KOP ligands in pathophysiology and we aimed to shed new light on KOP receptors as important elements during inflammation.


Assuntos
Analgésicos Opioides , Receptores Opioides kappa , Humanos , Sistema Imunitário , Inflamação , Receptores Opioides/fisiologia
7.
Cephalalgia ; 42(13): 1339-1348, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35833238

RESUMO

BACKGROUND: We aimed to examine the effects of repetitive cortical spreading depression on the responses of nociceptive trigeminal neurons with dural afferents and characterize the role of 5-HT1B/1D and opioid receptors. METHODS: Trigeminocervical complex neurons (n = 53) responsive to nociceptive activation of the dura mater were studied in rats using electrophysiological techniques. RESULTS: A sub-population (n = 32) showed an average inhibition of dural-evoked responses of 65 ± 14% from baseline with cortical spreading depression. This response was reversed by the selective 5-HT1B/1D receptor antagonist, GR127935 (3 mg/kg; n = 6, iv), and a non-selective opioid receptor antagonist, naloxone (1.5 mg/kg; n = 6, iv), five minutes after injection. To determine the role of the nucleus raphe magnus in the trigeminocervical complex inhibitory effect, microinjection of lidocaine (2%, n = 6) or muscimol (100 mM, n = 5) into the nucleus raphe magnus was performed. There was no effect on cortical spreading depression-induced inhibition of neuronal firing in trigeminocervical complex by either. CONCLUSION: The data demonstrate that repetitive cortical spreading depression inhibits a subpopulation of dural nociceptive trigeminocervical neurons, an effect mediated by serotonin and opioid receptors. This inhibition does not involve modulation of nucleus raphe magnus neurons.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Receptores Opioides , Receptores 5-HT1 de Serotonina , Animais , Ratos , Neurônios , Nociceptores , Receptores Opioides/fisiologia , Receptores 5-HT1 de Serotonina/fisiologia
8.
Adv Biol (Weinh) ; 6(9): e2200020, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35531616

RESUMO

Cancer is a significant public health problem worldwide. While there has been a steady decrease in the cancer death rate over the last two decades, the number of survivors has increased and, thus, cancer-related sequela. Pain affects the life of patients with cancer and survivors. Prescription opioids continue as the analgesic of choice to treat moderate-to-severe cancer-related pain. There has been controversy on whether opioids impact cancer progression by acting on cancer cells or the tumor microenvironment. The µ-opioid receptor is the site of action of prescription opioids. This receptor can participate in an important mechanism of cancer spread, such as perineural invasion. In this review, current evidence on the role of the µ-opioid receptor in cancer growth is summarized and preliminary evidence about its effect on the cross-talk between sensory neurons and malignant cells is provided.


Assuntos
Neoplasias , Receptores Opioides , Analgésicos/uso terapêutico , Analgésicos Opioides/uso terapêutico , Humanos , Dor/tratamento farmacológico , Receptores Opioides/fisiologia , Microambiente Tumoral
9.
Neurosci Bull ; 38(4): 403-416, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35397112

RESUMO

Spinal cord stimulation (SCS)-induced analgesia was characterized, and its underlying mechanisms were examined in a spared nerve injury model of neuropathic pain in rats. The analgesic effect of SCS with moderate mechanical hypersensitivity was increased with increasing stimulation intensity between the 20% and 80% motor thresholds. Various frequencies (2, 15, 50, 100, 10000 Hz, and 2/100 Hz dense-dispersed) of SCS were similarly effective. SCS-induced analgesia was maintained without tolerance within 24 h of continuous stimulation. SCS at 2 Hz significantly increased methionine enkephalin content in the cerebrospinal fluid. The analgesic effect of 2 Hz was abolished by µ or κ opioid receptor antagonist. The effect of 100 Hz was prevented by a κ antagonist, and that of 10 kHz was blocked by any of the µ, δ, or κ receptor antagonists, suggesting that the analgesic effect of SCS at different frequencies is mediated by different endorphins and opioid receptors.


Assuntos
Neuralgia , Estimulação da Medula Espinal , Analgésicos , Animais , Antagonistas de Entorpecentes/farmacologia , Neuralgia/terapia , Peptídeos Opioides , Ratos , Receptores Opioides/fisiologia , Receptores Opioides kappa , Medula Espinal
10.
Pharmacol Ther ; 233: 108014, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34624426

RESUMO

Endogenous opioid peptides and prescription opioid drugs modulate pain, anxiety and stress by activating four opioid receptors, namely µ (mu, MOP), δ (delta, DOP), κ (kappa, KOP) and the nociceptin/orphanin FQ receptor (NOP). Interestingly, several other receptors are also activated by endogenous opioid peptides and influence opioid-driven signaling and biology. However, they do not meet the criteria to be recognized as classical opioid receptors, as they are phylogenetically distant from them and are insensitive to classical non-selective opioid receptor antagonists (e.g. naloxone). Nevertheless, accumulating reports suggest that these receptors may be interesting alternative targets, especially for the development of safer analgesics. Five of these opioid peptide-binding receptors belong to the family of G protein-coupled receptors (GPCRs)-two are members of the Mas-related G protein-coupled receptor X family (MrgX1, MrgX2), two of the bradykinin receptor family (B1, B2), and one is an atypical chemokine receptor (ACKR3). Additionally, the ion channel N-methyl-d-aspartate receptors (NMDARs) are also activated by opioid peptides. In this review, we recapitulate the implication of these alternative receptors in opioid-related disorders and discuss their unconventional biology, with members displaying signaling to scavenging properties. We provide an overview of their established and emerging roles and pharmacology in the context of pain management, as well as their clinical relevance as alternative targets to overcome the hurdles of chronic opioid use. Given the involvement of these receptors in a wide variety of functions, including inflammation, chemotaxis, anaphylaxis or synaptic transmission and plasticity, we also discuss the challenges associated with the modulation of both their canonical and opioid-driven signaling.


Assuntos
Analgésicos Opioides , Receptores Opioides , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Biologia , Humanos , Antagonistas de Entorpecentes/farmacologia , Peptídeos Opioides , Receptores Opioides/fisiologia , Receptores Opioides mu
11.
J Neurosci Res ; 100(1): 99-128, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34559903

RESUMO

Over the past several years, studies have highlighted the δ-opioid receptor (DOPr) as a promising therapeutic target for chronic pain management. While exhibiting milder undesired effects than most currently prescribed opioids, its specific agonists elicit effective analgesic responses in numerous animal models of chronic pain, including inflammatory, neuropathic, diabetic, and cancer-related pain. However, as compared with the extensively studied µ-opioid receptor, the molecular mechanisms governing its trafficking remain elusive. Recent advances have denoted several significant particularities in the regulation of DOPr intracellular routing, setting it apart from the other members of the opioid receptor family. Although they share high homology, each opioid receptor subtype displays specific amino acid patterns potentially involved in the regulation of its trafficking. These precise motifs or "barcodes" are selectively recognized by regulatory proteins and therefore dictate several aspects of the itinerary of a receptor, including its anterograde transport, internalization, recycling, and degradation. With a specific focus on the regulation of DOPr trafficking, this review will discuss previously reported, as well as potential novel trafficking barcodes within the opioid and nociceptin/orphanin FQ opioid peptide receptors, and their impact in determining distinct interactomes and physiological responses.


Assuntos
Dor Crônica , Receptores Opioides , Analgésicos/uso terapêutico , Analgésicos Opioides , Animais , Dor Crônica/tratamento farmacológico , Peptídeos Opioides/fisiologia , Receptores Opioides/fisiologia , Receptores Opioides mu
12.
Neuroscience Bulletin ; (6): 403-416, 2022.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-929123

RESUMO

Spinal cord stimulation (SCS)-induced analgesia was characterized, and its underlying mechanisms were examined in a spared nerve injury model of neuropathic pain in rats. The analgesic effect of SCS with moderate mechanical hypersensitivity was increased with increasing stimulation intensity between the 20% and 80% motor thresholds. Various frequencies (2, 15, 50, 100, 10000 Hz, and 2/100 Hz dense-dispersed) of SCS were similarly effective. SCS-induced analgesia was maintained without tolerance within 24 h of continuous stimulation. SCS at 2 Hz significantly increased methionine enkephalin content in the cerebrospinal fluid. The analgesic effect of 2 Hz was abolished by μ or κ opioid receptor antagonist. The effect of 100 Hz was prevented by a κ antagonist, and that of 10 kHz was blocked by any of the μ, δ, or κ receptor antagonists, suggesting that the analgesic effect of SCS at different frequencies is mediated by different endorphins and opioid receptors.


Assuntos
Animais , Ratos , Analgésicos , Antagonistas de Entorpecentes/farmacologia , Neuralgia/terapia , Peptídeos Opioides , Receptores Opioides/fisiologia , Receptores Opioides kappa , Medula Espinal , Estimulação da Medula Espinal
13.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884757

RESUMO

Nociceptin/orphanin FQ (N/OFQ) is a 17-residue neuropeptide that binds the nociceptin opioid-like receptor (NOP). N/OFQ exhibits nucleotidic and aminoacidics sequence homology with the precursors of other opioid neuropeptides but it does not activate either MOP, KOP or DOP receptors. Furthermore, opioid neuropeptides do not activate the NOP receptor. Generally, activation of N/OFQ system exerts anti-opioids effects, for instance toward opioid-induced reward and analgesia. The NOP receptor is widely expressed throughout the brain, whereas N/OFQ localization is confined to brain nuclei that are involved in stress response such as amygdala, BNST and hypothalamus. Decades of studies have delineated the biological role of this system demonstrating its involvement in significant physiological processes such as pain, learning and memory, anxiety, depression, feeding, drug and alcohol dependence. This review discusses the role of this peptidergic system in the modulation of stress and stress-associated psychiatric disorders in particular drug addiction, mood, anxiety and food-related associated-disorders. Emerging preclinical evidence suggests that both NOP agonists and antagonists may represent a effective therapeutic approaches for substances use disorder. Moreover, the current literature suggests that NOP antagonists can be useful to treat depression and feeding-related diseases, such as obesity and binge eating behavior, whereas the activation of NOP receptor by agonists could be a promising tool for anxiety.


Assuntos
Peptídeos Opioides/fisiologia , Receptores Opioides/fisiologia , Estresse Fisiológico/fisiologia , Animais , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Transtornos da Alimentação e da Ingestão de Alimentos/tratamento farmacológico , Transtornos da Alimentação e da Ingestão de Alimentos/fisiopatologia , Humanos , Modelos Neurológicos , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/fisiopatologia , Peptídeos Opioides/agonistas , Peptídeos Opioides/antagonistas & inibidores , Recompensa , Estresse Fisiológico/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Receptor de Nociceptina
14.
Anesthesiology ; 135(3): 482-493, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34237134

RESUMO

BACKGROUND: Cebranopadol, a mixed nociceptin/opioid receptor full agonist, can effectively relieve pain in rodents and humans. However, it is unclear to what degree different opioid receptor subtypes contribute to its antinociception and whether cebranopadol lacks acute opioid-associated side effects in primates. The authors hypothesized that coactivation of nociceptin receptors and µ receptors produces analgesia with reduced side effects in nonhuman primates. METHODS: The antinociceptive, reinforcing, respiratory-depressant, and pruritic effects of cebranopadol in adult rhesus monkeys (n = 22) were compared with µ receptor agonists fentanyl and morphine using assays, including acute thermal nociception, IV drug self-administration, telemetric measurement of respiratory function, and itch-scratching responses. RESULTS: Subcutaneous cebranopadol (ED50, 2.9 [95% CI, 1.8 to 4.6] µg/kg) potently produced antinociception compared to fentanyl (15.8 [14.6 to 17.1] µg/kg). Pretreatment with antagonists selective for nociceptin and µ receptors, but not δ and κ receptor antagonists, caused rightward shifts of the antinociceptive dose-response curve of cebranopadol with dose ratios of 2 and 9, respectively. Cebranopadol produced reinforcing effects comparable to fentanyl, but with decreased reinforcing strength, i.e., cebranopadol (mean ± SD, 7 ± 3 injections) versus fentanyl (12 ± 3 injections) determined by a progressive-ratio schedule of reinforcement. Unlike fentanyl (8 ± 2 breaths/min), systemic cebranopadol at higher doses did not decrease the respiratory rate (17 ± 2 breaths/min). Intrathecal cebranopadol (1 µg) exerted full antinociception with minimal scratching responses (231 ± 137 scratches) in contrast to intrathecal morphine (30 µg; 3,009 ± 1,474 scratches). CONCLUSIONS: In nonhuman primates, the µ receptor mainly contributed to cebranopadol-induced antinociception. Similar to nociceptin/µ receptor partial agonists, cebranopadol displayed reduced side effects, such as a lack of respiratory depression and pruritus. Although cebranopadol showed reduced reinforcing strength, its detectable reinforcing effects and strength warrant caution, which is critical for the development and clinical use of cebranopadol.


Assuntos
Indóis/administração & dosagem , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Receptores Opioides/agonistas , Compostos de Espiro/administração & dosagem , Analgésicos Opioides/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Feminino , Fentanila/administração & dosagem , Injeções Espinhais , Macaca mulatta , Masculino , Peptídeos Opioides/administração & dosagem , Receptores Opioides/fisiologia , Receptores Opioides mu/agonistas , Receptores Opioides mu/fisiologia , Receptor de Nociceptina
15.
Peptides ; 141: 170548, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33862163

RESUMO

The ability to successfully cope with stress is known as 'resilience', and resilient individuals are less prone to develop psychopathologies. Understanding the neurobiological mechanisms of resilience may be instrumental to improve current therapies and benefit high-risk subjects. This review summarizes the complex interplay that exists between physiological and pathological responses to stressful events and the nociceptin/orphanin FQ (N/OFQ) - N/OFQ receptor (NOP) system, including: the effects of stress in regulating N/OFQ release and NOP expression; the ability of the N/OFQ-NOP system to modulate the hypothalamic-pituitary-adrenal axis; behavioral studies; and evidence in humans correlating this peptidergic system with psychopathologies. Available findings support the view that N/OFQ signaling stimulates the hypothalamic-pituitary-adrenal axis, thus increasing stress circulating hormones and corticotropin-releasing factor signaling. Additionally, activation of the NOP receptor inhibits monoamine transmission, including 5-HT, and this may contribute to maladaptive outcomes of stress. Ultimately, the N/OFQ system seems to have an important role in stress vulnerability, and blockade of NOP signaling may provide an innovative strategy for the treatment of stress related psychopathologies.


Assuntos
Peptídeos Opioides/fisiologia , Receptores Opioides/fisiologia , Estresse Psicológico/etiologia , Animais , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia , Antagonistas de Entorpecentes/farmacologia , Sistema Hipófise-Suprarrenal/fisiologia , Estresse Psicológico/tratamento farmacológico , Receptor de Nociceptina
16.
Eur J Pharmacol ; 901: 174089, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33826922

RESUMO

The participation of the peripheral opioid and cannabinoid endogenous systems in modulating muscle pain and inflammation has not been fully explored. Thus, the aim of this study was to investigate the involvement of these endogenous systems during muscular-tissue hyperalgesia induced by inflammation. Hyperalgesia was induced by carrageenan injection into the tibialis anterior muscles of male Wistar rats. We padronized an available Randal-Sellito test adaptation to evaluate nociceptive behavior elicited by mechanical insult in muscles. Western blot analysis was performed to evaluate the expression levels of opioid and cannabinoid receptors in the dorsal root ganglia. The non-selective opioid peptide receptor antagonist (naloxone) and the selective mu opioid receptor MOP (clocinnamox) and kappa opioid receptor KOP (nor-binaltorphimine) antagonists were able to intensify carrageenan-induced muscular hyperalgesia. On the other hand, the selective delta opioid receptor (DOP) antagonist (naltrindole) did not present any effect on nociceptive behavior. Moreover, the selective inhibitor of aminopeptidases (Bestatin) provoked considerable dose-dependent analgesia when intramuscularly injected into the hyperalgesic muscle. The CB1 receptor antagonist (AM251), but not the CB2 receptor antagonist (AM630), intensified muscle hyperalgesia. All irreversible inhibitors of anandamide hydrolase (MAFP), the inhibitor for monoacylglycerol lipase (JZL184) and the anandamide reuptake inhibitor (VDM11) decreased carrageenan-induced hyperalgesia in muscular tissue. Lastly, MOP, KOP and CB1 expression levels in DRG were baseline even after muscular injection with carrageenan. The endogenous opioid and cannabinoid systems participate in peripheral muscle pain control through the activation of MOP, KOP and CB1 receptors.


Assuntos
Mialgia/tratamento farmacológico , Receptores de Canabinoides/fisiologia , Receptores Opioides/fisiologia , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Carragenina , Cinamatos/farmacologia , Endocanabinoides/antagonistas & inibidores , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/psicologia , Masculino , Monoacilglicerol Lipases/antagonistas & inibidores , Derivados da Morfina/farmacologia , Mialgia/induzido quimicamente , Mialgia/psicologia , Naloxona/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Medição da Dor/efeitos dos fármacos , Alcamidas Poli-Insaturadas/antagonistas & inibidores , Ratos , Ratos Wistar , Receptores de Canabinoides/efeitos dos fármacos , Receptores Opioides/efeitos dos fármacos , Receptores Opioides delta/efeitos dos fármacos , Receptores Opioides kappa/efeitos dos fármacos , Receptores Opioides mu/efeitos dos fármacos
17.
Peptides ; 141: 170547, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33831447

RESUMO

This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).


Assuntos
Peptídeos Opioides/farmacologia , Peptídeos Opioides/fisiologia , Receptores Opioides/fisiologia , Estresse Psicológico/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/etiologia , Analgésicos Opioides/farmacologia , Animais , Dor do Câncer/tratamento farmacológico , Dor do Câncer/genética , Dor Crônica/tratamento farmacológico , Etanol/farmacologia , Feminino , Humanos , Memória/efeitos dos fármacos , Memória/fisiologia , Dor Pós-Operatória/tratamento farmacológico , Gravidez , Receptores Opioides/agonistas , Comportamento Sexual/fisiologia , Status Social , Transtornos Relacionados ao Uso de Substâncias/genética
18.
Undersea Hyperb Med ; 48(1): 13-23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33648029

RESUMO

Neuropathic pain (NPP) refers to the pain caused by primary or secondary injury or dysfunction of the peripheral or central nervous system, and usually requires multidisciplinary treatment. However, most pharmacological and non-pharmacological interventions can only temporarily and/or moderately improve pain-related symptoms, and they often produce unbearable adverse reactions or cause drug resistance. Hyperbaric oxygen (HBO2) therapy has been widely used in the clinical treatment of some diseases due to its advantages of safety, few side effects, no resistance, and non-invasiveness. In recent years, increasing numbers of basic and clinical studies have been conducted to investigate the efficacy and mechanism of HBO2 in the treatment of NPP, and great progress has been made in this field. In this paper, we briefly introduce the pathogenesis of NPP and therapeutic effects of HBO2 and summarize the mechanisms underlying the effects of HBO2 in treating NPP, which may provide reference for the clinical treatment of pain with HBO2.


Assuntos
Oxigenoterapia Hiperbárica/tendências , Neuralgia/terapia , Animais , Apoptose/fisiologia , Pressão Atmosférica , Modelos Animais de Doenças , Neurônios GABAérgicos/fisiologia , Humanos , Oxigenoterapia Hiperbárica/métodos , Camundongos , Transtornos de Enxaqueca/terapia , Neuralgia/etiologia , Neurite (Inflamação)/complicações , Óxido Nítrico/fisiologia , Estresse Oxidativo/fisiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Ratos , Receptores Opioides/fisiologia
19.
Transl Res ; 234: 31-42, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567346

RESUMO

Nociception and opioid antinociception in females are pliable processes, varying qualitatively and quantitatively over the reproductive cycle. Spinal estrogenic signaling via membrane estrogen receptors (mERs), in combination with multiple other signaling molecules [spinal dynorphin, kappa-opioid receptors (KOR), glutamate and metabotropic glutamate receptor 1 (mGluR1)], appears to function as a master coordinator, parsing functionality between pronociception and antinociception. This provides a window into pharmacologically accessing intrinsic opioid analgesic/anti-allodynic systems. In diestrus, membrane estrogen receptor alpha (mERα) signals via mGluR1 to suppress spinal endomorphin 2 (EM2) analgesia. Strikingly, in the absence of exogenous opioids, interfering with this suppression in a chronic pain model elicits opioid anti-allodynia, revealing contributions of endogenous opioid(s). In proestrus, robust spinal EM2 analgesia is manifest but this requires spinal dynorphin/KOR and glutamate-activated mGluR1. Furthermore, spinal mGluR1 blockade in a proestrus chronic pain animal (eliminating spinal EM2 analgesia) exacerbates mechanical allodynia, revealing tempering by endogenous opioid(s). A complex containing mu-opioid receptor, KOR, aromatase, mGluRs, and mERα are foundational to eliciting endogenous opioid anti-allodynia. Aromatase-mERα oligomers are also plentiful, in a central nervous system region-specific fashion. These can be independently regulated and allow estrogens to act intracellularly within the same signaling complex in which they are synthesized, explaining asynchronous relationships between circulating estrogens and central nervous system estrogen functionalities. Observations with EM2 highlight the translational relevance of extensively characterizing exogenous responsiveness to endogenous opioids and the neuronal circuits that mediate them along with the multiplicity of estrogenic systems that concomitantly function in phase and out-of-phase with the reproductive cycle.


Assuntos
Analgesia , Estrogênios/fisiologia , Glutamatos/fisiologia , Nociceptividade/fisiologia , Peptídeos Opioides/fisiologia , Analgesia/métodos , Analgésicos/farmacologia , Animais , Sistema Nervoso Central/fisiologia , Dor Crônica/tratamento farmacológico , Dor Crônica/fisiopatologia , Feminino , Humanos , Masculino , Modelos Neurológicos , Receptores de Estrogênio/fisiologia , Receptores de Glutamato/fisiologia , Receptores Opioides/fisiologia , Pesquisa Translacional Biomédica
20.
J Invest Dermatol ; 141(5): 1286-1296.e4, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33058860

RESUMO

Codeine stimulates skin mast cells and is therefore used in skin tests and as an inducer of experimental itch. MRGPRX2 responds to various drugs, including opioids, to elicit pseudoallergic reactions, but whether it represents the main opiate receptor of skin mast cells remains unknown. By combining a number of approaches, including the silencing of MRGPRX2, we now report that MRGPRX2 is indeed the dominant codeine receptor of dermal mast cells. Activation by codeine displayed profound subject variability and correlated with secretion elicited by compound 48/80 or substance P but not by FcεRI aggregation. Degranulation by codeine was attenuated by stem cell factor, whereas the opposite was found for FcεRI. Compound 48/80 or codeine alone was able to achieve maximum MRGPRX2 activation. MRGPRX2 was rapidly internalized on codeine binding in a ß-arrestin-1‒dependent manner. Codeine-triggered ß-arrestin activation was also established by the Tango assay. Prestimulation with MRGPRX2 agonists (but not C3a or FcεRI aggregation) resulted in refractoriness to further stimulation by the same or another MRGPRX2 ligand (cross desensitization). This was duplicated in a cell line (RBL-MRGPRX2). Collectively, codeine degranulates skin mast cells through MRGPRX2, at which it acts as a balanced ligand. It has yet to be determined whether codeine-induced refractoriness could be exploited to desensitize MRGPRX2 to prevent severe pseudoallergic reactions.


Assuntos
Codeína/farmacologia , Mastócitos/efeitos dos fármacos , Proteínas do Tecido Nervoso/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores de IgE/fisiologia , Receptores de Neuropeptídeos/fisiologia , Receptores Opioides/fisiologia , Pele/efeitos dos fármacos , beta-Arrestinas/fisiologia , Degranulação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Mastócitos/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...